Large-Scale Graph-based Transductive Inference
نویسندگان
چکیده
We consider the issue of scalability of graph-based semi-supervised learning (SSL) algorithms. In this context, we propose a fast graph node ordering algorithm that improves (parallel) spatial locality by being cache cognizant. This approach allows for a near linear speedup on a shared-memory parallel machine to be achievable, and thus means that graph-based SSL can scale to very large data sets. We use the above algorithm in a multi-threaded multi-core implementation to solve a SSL problem on a 120 million node graph in a reasonable amount of time.
منابع مشابه
Large-Scale Multiclass Transduction
We present a method for performing transductive inference on very large datasets. Our algorithm is based on multiclass Gaussian processes and is effective whenever the multiplication of the kernel matrix or its inverse with a vector can be computed sufficiently fast. This holds, for instance, for certain graph and string kernels. Transduction is achieved by variational inference over the unlabe...
متن کاملA Graph Regularization Based Approach to Transductive Class-Membership Prediction
Considering the increasing availability of structured machine processable knowledge in the context of the Semantic Web, only relying on purely deductive inference may be limiting. This work proposes a new method for similaritybased class-membership prediction in Description Logic knowledge bases. The underlying idea is based on the concept of propagating class-membership information among simil...
متن کاملTransductive Inference for Class-Membership Propagation in Web Ontologies
Abstract. The increasing availability of structured machine-processable knowledge in the context of the Semantic Web, allows for inductive methods to back and complement purely deductive reasoning in tasks where the latter may fall short. This work proposes a new method for similarity-based class-membership prediction in this context. The underlying idea is the propagation of class-membership i...
متن کاملTransductive Rademacher Complexities for Learning Over a Graph
Recent investigations [12, 2, 8, 5, 6] and [11, 9] indicate the use of a probabilistic (’learning’) perspective of tasks defined on a single graph, as opposed to the traditional algorithmical (’computational’) point of view. This note discusses the use of Rademacher complexities in this setting, and illustrates the use of Kruskal’s algorithm for transductive inference based on a nearest neighbo...
متن کاملInteractive Segmentation in Multimodal Medical Imagery using a Bayesian Transductive Learning Approach
Labeled training data in the medical domain is rare and expensive to obtain. The lack of labeled multimodal medical image data is a major obstacle for devising learning-based interactive segmentation tools. Transductive learning (TL) or semi-supervised learning (SSL) offers a workaround by leveraging unlabeled and labeled data to infer labels for the test set given a small portion of label info...
متن کامل